Human cardiac potassium channel DNA polymorphism modulates access to drug-binding site and causes drug resistance.

نویسندگان

  • Benoit Drolet
  • Chantale Simard
  • Laura Mizoue
  • Dan M Roden
چکیده

Expression of voltage-gated K channel, shaker-related subfamily, member 5 (KCNA5) underlies the human atrial ultra-rapid delayed rectifier K current (I(Kur)). The KCNA5 polymorphism resulting in P532L in the C terminus generates I(Kur) that is indistinguishable from wild type at baseline but strikingly resistant to drug block. In the present study, truncating the C terminus of KCNA5 generated a channel with wild-type drug sensitivity, which indicated that P532 is not a drug-binding site. Secondary structure prediction algorithms identified a probable alpha-helix in P532L that is absent in wild-type channels. We therefore assessed drug sensitivity of I(Kur) generated in vitro in CHO and HEK cells by channels predicted to exhibit or lack this C-terminal alpha-helix. All constructs displayed near-identical I(Kur) in the absence of drug challenge. However, those predicted to lack the C-terminal alpha-helix generated quinidine-sensitive currents (43-51% block by 10 microM quinidine), while the currents generated by those constructs predicted to generate a C-terminal alpha-helix were inhibited less than 12%. Circular dichroism spectroscopy revealed an alpha-helical signature with peptides derived from drug-resistant channels and no organized structure in those associated with wild-type drug sensitivity. In conclusion, we found that this secondary structure in the KCNA5 C terminus, absent in wild-type channels but generated by a naturally occurring DNA polymorphism, does not alter baseline currents but renders the channel drug resistant. Our data support a model in which this structure impairs access of the drug to a pore-binding site.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Association between ABCB1-T1236C Polymorphism and Drug-Resistant Epilepsy in Iranian Female Patients

Background: One third of epileptic patients are resistant to several anti-epileptic drugs (AED). P-glycoprotein (P-gp) is an efflux transporter encoded by ATP-binding cassette subfamily B member 1 (ABCB1) gene that excludes drugs from the cells and plays a significant role in AEDs resistance. Over-expression of P-gp could be a result of polymorphisms in ABCB1 gene. We studied the association of...

متن کامل

Investigation and Determination the Binding Site of Glycyrrhizin of Liquorice to DNA

Glycyrrhizin(GL), is a triterpenoid saponin found in glychyrrhiza glabra (liquorice). This compound is a frequently used and very effective drug for the treatment of various malignancies. This study was designed to examine the interactions of glycyrrhizin with calf thymus DNA in aqueous solution at physiological conditions. FTIR spectroscopic method was used to determine the ligand binding mode...

متن کامل

Resistance mechanism of human immunodeficiency virus type-1 protease to inhibitors: A molecular dynamic approach

Human immunodeficiency virus type 1 (HIV-1) protease inhibitors comprise an important class of drugs used in HIV treatments. However, mutations of protease genes accelerated by low fidelity of reverse transcriptase yield drug resistant mutants of reduced affinities for the inhibitors. This problem is considered to be a serious barrier against HIV treatment for the foreseeable future. In this st...

متن کامل

CCL2 Polymorphism in Drug-Resistant and Drug-Responsive Patients with Epilepsy in Isfahan, Iran

ABSTRACT          Background and objective: Approximately 50 million people worldwide (1% of the world's population) suffer from epilepsy. Among 700 thousand people with epilepsy in Iran, 20% have refractory epilepsy. Accumulation of leukocytes in patients' brain parenchyma is thought to be related to different types of epilepsy. Recent clinical observat...

متن کامل

P 134: Use of Zinc in Drugs to Improve Neuroinflammation Disease

Zinc is a substance that regulates neural excitability by binding whit sodium channel and potassium channel. The efficiency of free zinc ion, make down the neural survival rate, reduced the peak amplitude of Na+ and make depolarization Na channel, increased the peak amplitude of transition outward k+ currents and delayed rectifier. Also it is an effective blocker of one subtype of tetrodoxine (...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of clinical investigation

دوره 115 8  شماره 

صفحات  -

تاریخ انتشار 2005